martes, 29 de mayo de 2018

TEMA 4 TIPOS DE MEMORIA

TIPOS DE 

MEMORIAS DE SEMICONDUCTORES

Todas las memorias que se van a tratar en este apartado son de direccionamiento cableado, o sea, de acceso aleatorio o RAM. Sin embargo, dentro de estas memorias se ha desarrollado otra terminología que resulta un poco confusa, pues repite términos empleados con otro sentido. 

Se puede establecer la siguiente clasificación: 

de lectura y escritura(RAM) 

  • Estáticas. 

  • Dinámicos o con refresco. 

  • de sólo lectura 

  • ROM (Read Only Memory) 

  • PROM (Programmable Read Only Memory) 

  • EPROM (Erasable Programmable Read Only Memory) 

  • EEPROM (Electricaly Erasable Read Only Memory ) 

MEMORIA RAM



Es la memoria de acceso aleatorio (Random Access Memory). Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que acceder a la información anterior y posterior. 

Es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga. 

Hay dos tipos básicos de RAM: 

DRAM (Dynamic RAM), RAM dinámica, 

SRAM (Static RAM), RAM estática

Tipos de Memoria RAM: 

1) DRAM (Dynamic Random Access Memory) 

Es la memoria de acceso aleatorio dinámica. Está organizada en direcciones de memoria (Addresses) que son reemplazadas muchas veces por segundo. 

2) SRAM (Static Random Access Memory) 


Memoria estática de acceso aleatorio es la alternativa a la DRAM. No necesita tanta electricidad para su refresco y reemplazo de las direcciones y funciona más rápido porque no está reemplazando constantemente las instrucciones y los valores almacenados en ella. La desventaja es su altísimo coste comparado con la DRAM. Puede almacenar y recuperar los datos rápidamente y se conoce normalmente como MEMORIA CACHE. 

3) VRAM (video RAM) 

Memoria de propósito especial usada por los adaptadores de vídeo. A diferencia de la convencional memoria RAM, la VRAM puede ser accedida por dos diferentes dispositivos de forma simultánea. Esto permite que un monitor pueda acceder a la VRAM para las actualizaciones de la pantalla al mismo tiempo que un procesador gráfico suministra nuevos datos. VRAM permite mejores rendimientos gráficos aunque es más cara que la una RAM normal. 

4) SIMM ( Single In Line Memory Module) 


Un tipo de encapsulado consistente en una pequeña placa de circuito impreso que almacena chips de memoria, y que se inserta en un zócalo SIMM en la placa madre o en la placa de memoria. Los SIMMs son más fáciles de instalar que los antiguos chips de memoria individuales, y a diferencia de ellos son medidos en bytes en lugar de bits. 

5) DIMM (Dual In Line Memory) 

Un tipo de encapsulado, consistente en una pequeña placa de circuito impreso que almacena chips de memoria, que se inserta en un zócalo DIMM en la placa madre y usa generalmente un conector de 168 contactos. 

DIP (Dual In Line Package) 

Un tipo de encapsulado consistente en almacenar un chip de memoria en una caja rectangular con dos filas de pines de conexión en cada lado. 

RAM Disk 
Se refiere a la RAM que ha sido configurada para simular un disco duro. Se puede acceder a los ficheros de un RAM disk de la misma forma en la que se acceden a los de un disco duro. Sin embargo, los RAM disk son aproximadamente miles de veces más rápidos que los discos duros, y son particularmente útiles para aplicaciones que precisan de frecuentes accesos a disco. 

Dado que están constituidos por RAM normal. los RAM disk pierden su contenido una vez que la computadora es apagada. 

MEMORIA CACHE O RAM CACHE



Un caché es un sistema especial de almacenamiento de alta velocidad. Puede ser tanto un área reservada de la memoria principal como un dispositivo de almacenamiento de alta velocidad independiente. Hay dos tipos de caché frecuentemente usados en las computadoras personales: memoria caché y caché de disco. Una memoria caché, llamada también a veces almacenamiento caché ó RAM caché, es una parte de memoria RAM estática de alta velocidad (SRAM) más que la lenta y barata RAM dinámica (DRAM) usada como memoria principal.
El caché de disco trabaja sobre los mismos principios que la memoria caché, pero en lugar de usar SRAM de alta velocidad, usa la convencional memoria principal.

MEMORIA ROOM


Estas letras son las siglas de Read Only Memory (memoria de solo lectura) y eso es exactamente lo que es, una memoria que se graba en el proceso de fabricación con una información que está ahí para siempre, para lo bueno y lo malo.
 
MEMORIA PROM 

 



Para este tipo de memoria basta decir que es un tipo de memoria ROM que se puede programar mediante un proceso especial, posteriormente a la fabricación. 


MEMORIA EPROM 

 

La memoria EPROM ( la E viene de ERASABLE -borrable-) es una ROM que se puede borrar totalmente y luego reprogramarse, aunque en condiciones limitadas. Las EPROM son mucho más económicas que las PROM porque pueden reutilizarse.

MEMORIA EEPROM


Aún mejores que las EPROM son las EEPROM ( EPROM eléctricamente borrables) también llamadas EAROM (ROM eléctricamente alterables), que pueden borrarse mediante impulsos eléctricos, sin necesidad de que las introduzcan en un receptáculo especial para exponerlos a luz ultravioleta. 

martes, 22 de mayo de 2018

TEMA 3 RANURAS DE EXPANCION

RANURAS DE EXPANSIÓN


 que es Ranura de Expansión
Utilidad

Un slot de expansión es un elemento de la placa base de un ordenador que permite conectar a ésta una tarjeta adicional o de expansión, la cual suele realizar funciones de control de dispositivos periféricos adicionales, tales como monitores , impresoras o unidades de disco.

Las ranuras están conectadas entre sí. Una computadora personal dispone generalmente de ocho unidades, aunque puede llegar hasta doce.

Tipos

XT : Es una de las ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernas (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento; necesita ser revisados antes.


ISA : La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI .


 

VESA :En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video . Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 32 bits y con una frecuencia que varia desde 33 a 40 megahercios. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 0,9 de ancho (ISA) y 0,8 de ancho (extensión).

 

PCI : es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales , donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI.

 

PCI-Express :  es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido. Este sistema es apoyado principalmente por Intel, que empezó a desarrollar el estándar con nombre de proyecto Arapahoe después de retirarse del sistema Infiniband .
PCI Express es abreviado como PCI-E o PCIe, aunque erróneamente se le suele abreviar como PCI-X o PCIx. Sin embargo, PCI Express no tiene nada que ver con PCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.

 

AGP : El puerto AGP es de 32 bits como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria de acceso aleatorio (RAM). Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del bus es de 66 MHz.

TEMA 2 PLACA MADRE Y MICROPROCESADOR


PLACA MADRE O TARJETA MADRE
Dentro del mundo de la informática, se habla de tipos de tarjeta madre o motherboard para hacer alusión a aquellas piezas que cumplen la función de conectar los distintos componentes de una computadora, gracias al circuito impreso que poseen. 
Otras de las funciones que cumplen estas tarjetas son controlar, distribuir y administrar la energía eléctrica; monitorear y controlar; comunicar datos y, por último, temporizar y sincronizar. También conocidas como “placa madre”, estas tarjetas son introducidas en el gabinete de la máquina y logra conectar tanto los dispositivos internos como los externos. 
Entre otros componentes que integran a la tarjeta madre se identifican los conectores externos, los eléctricos y los internos; BIOS; ranuras de memoria; chipset; pilas y puertos E/S.
En el mercado existen distintos tipos de tarjeta madre, que varían de acuerdo a su formato. Algunos de ellos son los siguientes:
AT: también conocida bajo el nombre de AT-Baby, este tipo de tarjeta madre fue, durante años, una de las más buscadas en el mercado por ser pequeña y tener la capacidad de poder adaptarse a diferentes clases de cajas con facilidad. De todas maneras, este formato a veces presentaba serios inconvenientes ya que sus componentes se encontraban muy próximos entre sí. Dentro de las Baby-AT se pueden encontrar distintas variedades de tamaño y, además de esto, cuentan con conectores DIM para teclados, de cinco pines.
Resultado de imagen para PLACA MADRE AT:
ATX: este formato de tarjeta madre se caracteriza por ser uno de los más vendidos en el mercado informático. Entre otras cosas, tienen la ventaja de ser fáciles de ventilar y por evitar que los cables de la PC se  enreden, la que lo vuelve muy práctica. Entre otras cosas las tarjetas ATX cumplen con lo que se denominan los estándares de anchura y pueden encontrarse en el mercado con anchos de diferente tamaño. Además, poseen ranuras para tarjetas y la electricidad que les llega proviene de un conector que cuenta con una única pieza.
Resultado de imagen para PLACA MADRE ATX
ATX: esta se caracteriza por ser un formato económico, ya que cuenta con un único conector que se encarga de suministrarle la energía eléctrica. Además, la memoria y el procesador tienen la cualidad de encontrarse a muy poca distancia del ventilador, así como también de la fuente de poder. Otro rasgo de las tarjetas ATX es que contiene en su parte de atrás una zona de conectores. De esta manera, los cables del mismo logran llegar a la parte de atrás del gabinete.
Micro ATX: como su nombre deja entrever, este formato posee un tamaño menor que el de la tarjeta madre ATX aunque puede ser utilizado con total normalidad en los gabinetes diseñados para dichas tarjetas. Otra cualidad que diferencia a estas tarjetas de las anteriores es que pueden ser encontradas en el mercado a un precio menor, por lo que se volvieron más populares para los usuarios.
Resultado de imagen para PLACA MADRE MICRO ATX
FLEX ATX: dentro de las tarjetas madre ATX, estas son las que poseen el tamaño más reducido. Una cualidad que la diferencia del resto de las placas es que tiene la posibilidad de admitir un único procesador socket.
Resultado de imagen para PLACA MADRE FLEX ATX
LPX: las tarjetas madre como esta se caracteriza por contar con un mini DIM tanto para el teclado como para el mouse de la computadora. Además de esto, las ranuras de expansión se insertan en ella por medio de una tarjeta de BUS, que es vertical. Por otro lado, los conectores de las tarjetas LPX se encuentran ubicados en su parte de atrás.
Resultado de imagen para PLACA MADRE LPX
NLX: un formato como este se caracteriza por intentar solucionar algunos problemas que presentaban otros formatos, como las elevadas temperaturas que producían o contar con un tamaño poco adecuad. Además, esta tarjeta madre permite quitar cualquier unidad del disco sin tener la necesidad de mover otras tarjetas. Las NLX fueron diseñadas con el objeto de lograr reemplazar a las tarjetas LPX mencionadas más arriba. Una ventaja que cuenta este formato es que ofrece la posibilidad de poder integrar las últimas tecnologías de forma total.

BTX: Resultado de imagen para PLACA MADRE NLXesta clase de tarjeta madre se caracteriza por responderle a aquellas tarjetas gráficas y CPU que cada vez necesitan una potencia mayor. Otra necesidad que intentó satisfacer es que la computadora no haga tanto ruido mientras estén en funcionamiento. De todas formas, a pesar de estas intensiones, fue un formato que tuvo muy poco éxito en el mercado, por lo que al poco tiempo fue retirada de las góndolas.
Resultado de imagen para PLACA MADRE BTX
Dentro de las tarjetas madres Pentium, se pueden encontrar los siguientes tipos:
Pentium I: en el año 1995 fue lanzada al mercado este modelo de tarjeta madre, que se caracteriza por contar con Bus de datos tanto interno como externo de 64 bits. Además, su memoria tiene la capacidad de almacenar hasta 64 Gb. Por sus características, estas placas madre pueden ser utilizadas en computadoras que cuenten con varias estaciones y servidores, así como también en aquellas de altas prestaciones. Dentro del mercado pueden hallarse distintas variedades de estas placas, que se adecuan a las necesidades del usuario.
Imagen relacionada
Pentium II: esta placa presenta algunos rasgos que superan a la versión anterior, como por ejemplo, presentar una mayor memoria caché. Además de esto, sigue siendo una buena opción que, debido a la irrupción de nuevos modelos, ha reducido su precio de mercado de manera significativa.
Imagen relacionada
Pentium III: este tercer diseño de placa madre fue lanzado al mercado tras el desarrollo y difusión de Internet, por lo que cuenta con cualidades que lo contemplan. Entre otras cosas, ofrece la posibilidad de procesar sonidos de alta calidad, imágenes y videos, gracias a sus aplicaciones avanzadas. Además con esta placa madre se pueden procesar y desarrollar imágenes en tres dimensiones, así como también animaciones de excelente calidad. También, tienen la capacidad de poder reconocer el habla, lo que facilita y agiliza de forma significativa el uso de páginas web que tengan en cuenta esta función así como también aquellos procesadores de texto con habla, en tiempo real.



¿Qué es el microprocesador?


Los microprocesadores contienen un oscilador de cuarzo que genera los pulsos a un ritmo constante de manera que se pueden generar varios ciclos en un segundo, la velocidad de los microprocesadores se mide en frecuencias y estas pueden ser megahertzios (MHz) o Gigahertzios (GHz) es decir, miles de millones o millones de ciclos por segundo.
Para determinar la velocidad a la que trabaja la CPU podemos utilizar el indicador de frecuencia, es decir, entre mayor frecuencia mayor velocidad para el proceso de información, pero no es el único indicador que lo determina, también necesitamos saber la cantidad de instrucciones necesarias para realizar una tarea concreta y la cantidad de instrucciones ejecutadas por ciclo (ICP).
La cantidad de instrucciones que se necesita para ejecutar un proceso depende directamente de cuantas estén disponibles, mientras que para ICP dependerá del factor súper segmentación y la cantidad de unidades de proceso o conocido como pipelines.
La arquitectura de un microprocesador es similar a la de una computadora digital, esto se debe a que ambos realizan operaciones bajo un programa de control. En un microprocesador se encuentran las siguientes partes:


  • Encapsulado. Impide el deterioro del microprocesador recubriendo la oblea de silicio, ayudándolo a acoplarse con el zócalo de la placa base.
  • Memoria Cache. Memoria ultrarrápida que emplea el micro para tener mejor alcance de datos y no recurrir a la memoria RAM. Cuanto mas tenga mejor, aunque ojo a veces cuanto mas tiene mas lenta es.
  • Coprocesador matemático. Realiza las operaciones matemáticas.
  • Registros. Memoria pequeña que el micro posee para usos particulares.
  • Memoria. Lugar donde se almacenas las instrucciones de los programas y sus datos.
  • Puertos. Comunicación del microprocesador con el mundo externo.
Imagen relacionada

II UNIDAD TEMA 1 SOCKETS

LINEA DE TIEMPO DE LOS SOCKETS

Los diferentes micros no se conectan de igual manera a las placas:
  • Socket, con mecanismo ZIF (Zero Insertion Force). En ellas el procesador se inserta y se retire sin necesidad de ejercer alguna presión sobre él. Al levantar la palanquita que hay al lado se libera el microprocesador, siendo extremadamente sencilla su extracción. Estos zócalos aseguran la actualización del microprocesador. Antiguamente existía la variedad LIF (Low Insertion Force), que carecía de dicha palanca.
  • Slot A / Slot 1 /Slot 2. Existieron durante una generación importante de PCs (entre 1997 y 2000 aproximadamente) reemplazando a los sockets. Es donde se conectan respectivamente los primeros procesadores Athlon de AMD / los procesadores Pentium II y primeros Pentium III y los procesadores Xeon de Intel dedicados a servidores de red. Todos ellos son cada vez más obsoletos. El modo de insertarlos es a similar a una tarjeta gráfica o de sonido, ayudándonos de dos guías de plástico insertadas en la placa base.
  • En las placas base más antiguas el micro iba soldado, de forma que no podía actualizarse. Hoy día esto no se ve en lo referente a los microprocesadores de PC.

Sockets de 8ª generación
 
Nombre: Socket 775 o T
Pines: 775 bolas FC-LGA
Voltajes: VID VRM (0.8 - 1.55 V)
Bus: 133x4, 200x4, 266x4 MHz
Multiplicadores:  13.0x - 22.0x
Micros soportados:
Celeron D (Prescott, 326/2'533 a 355/3'333 GHz, FSB533)
Celeron D (Cedar Mill, 352/3'2 a 356/3'333 GHZ, FSB533)
Pentium 4 (Smithfield, 805/2'666 GHZ, FSB 533)
Pentium 4 (Prescott, 505/2,666 a 571/3,8 GHZ, FSB 533/800)
Pentium 4 (Prescott 2M, 630/3'0 a 672/3,8 GHZ, FSB 533/800)
Pentium 4 (Cedar Mill, 631/3'0 a 661/3'6 GHz, FSB 800)
Pentium D (Presler, 915/2'8 a 960/3'6 GHZ, FSB 800)
Intel Pentium Extreme (Smithfield, 840, 3'2 GHz)
Pentium 4 Extreme (Gallatin, 3'4 - 3'46 GHz)
Pentium 4 Extreme (Prescott, 3.73 GHz)
Intel Pentium Extreme (Presler, 965/3073 GHz)

Core 2 Duo (Allendale, E6300/1'866 a E6400/2133 GHz, FSB 1066)
Core 2 Duro (Conroe, E6600/2'4 a E6700/2'666 GHz, FSB 1066)
Core 2 Extreme (Conroe XE, X6800EE/2'933 GHZ)
Core 2 ??? (Millville, Yorkfield, Bloomfield)
Core 2 Duo ??? (Wolfdale, Ridgefield)
Core 2 Extreme ??? (Kentsfield, cuatro cores)
Notas: los núcleos Presler, Allendale y Conroe son dobles (doble core).

 
Nombre: Socket 939
Pines: 939 ZIF
Voltajes: VID VRM (1.3 - 1.5 V)
Bus: 200x5 MHz
Multiplicadores:  9.0x - 15.0x
Micros soportados:
Athlon 64 (Victoria, 2GHz+)
Athlon 64 (Venice, 3000+ a 3800+)
Athlon 64 (Newcastle, 2800+ a 3800+)
Athlon 64 (Sledgehammer, 4000+, FX-53 y FX-55)
Athlon 64 (San Diego, 3700+. FX-55 y FX-57)
Athlon 64 (San Diego)
Athlon 64 (Winchester 3000+ a ???)
Athlon 64 X2 (Manchester, 3800+ a 4600+)
Athlon 64 X2 (Toledo, 4400+ a 5000+ y FX-60)
Athlon 64 X2 (Kimono)
Opteron (Venus, 144-154)
Opteron (Denmark, 165-185)
Sempron (Palermo, 3000+ a 3500+)
Notas: los núcleos X2 Manchester, Toledo y Denmark son dobles (doble core).
Nombre: Socket AM2
Pines: 940 ZIF
Voltajes: VID VRM (1.2 - 1.4 V)
Bus: 200x5 MHz
Multiplicadores:  8.0x - 14.0x
Micros soportados:
Athlon 64 (Orleans, 3200+ a 3800+)
Athlon 64 ??? (Spica)
Athlon 64 X2 (Windsor, 3600+ a 5200+, FX-62)
Athlon 64 X2 ??? (Brisbane)
Athlon 64 X2 ??? (Arcturus)
Athlon 64 X2 ??? (Antares)
Athlon 64 Quad ??? (Barcelona)
Athlon 64 Quad ??? (Budapest)
Athlon 64 Quad ??? (Altair)
Opteron (Santa Ana, 1210 a 1216)
Sempron64 (Manila, 2800+ a 3600+)
Athlon 64 ??? (Sparta)
Notas:
Los núcleos Windsor y Santa Ana son dobles (doble core).
- Los Windsor traen entre 256 y 1024 Kb de caché, comparar modelos
Nombre: Socket 754
Pines:
 754 ZIF
Voltajes: VID VRM (1.4 - 1.5 V)
Bus: 200x4 MHz
Multiplicadores:  10.0x - 12.0x
Micros soportados:
Athlon 64 (Clawhammer, 2800+ a 3700+)
Athlon 64 Mobile (Clawhammer, 3000+)
Athlon 64 (Newcastle, 2800+ a 3000+)
Sempron 64 (Paris, 2600+ a 3300+)
Sempron 64 (Palermo, 2600+ a 3400+)
Nombre: Socket 940
Pines:
 940 ZIF
Voltajes: VID VRM (1.5 - 1.55 V)
Bus: 200x4 MHz
Multiplicadores:  7.0x - 12.0x
Micros soportados:
Athlon 64 (Sledgehammer, FX-51 y FX-53)
Opteron (Sledgehammer, 140 - 150)
Opteron (Denmark, 165- ???)
Opteron (Sledgehammer, 240 - 250)
Opteron (Troy, 246 - 254)
Opteron (Italy, 265 - 285)
Opteron (Sledgehammer, 840 - 850)
Opteron (Athens, 850)
Opteron (Egypt, 865 - 880)
Nombre: Socket 771
Pines: 771 bolas FC-LGA
Voltajes: VID VRM
Bus: 166x4, 266x4, 333x4 MHz
Multiplicadores:  12.0x - 18.0x
Micros soportados:
Xeon (Dempsey, 5030/2'67 a 5050/3'0 GHz, FSB 667)
Xeon (Dempsey, 5060/3'2 a 5080/3,73 GHz, FSB 1033)
Xeon (Woodcrest 5110/1'6 a 5120/1'866 GHz, FSB 1066)
Xeon (Woodcrest 5130/2'0 a 5160/3'0 GHz, FSB 1333)
Notas: el núcleo Woodcrest es doble (doble core)

 
Nombre: Socket F
Pines: 1207 bolas FC-LGA
Voltajes: VID VRM
Bus: 200x4 MHz
Multiplicadores:  9.0x - 14.0x
Micros soportados:
Opteron (Santa Rosa, 2210~22220 SE)
Opteron (Santa Rosa, 8212~8220 SE)
Opteron ??? (Deerhound)
Opteron ??? (Shanghai)
Opteron ??? (Greyhound)
Opteron ??? (Zamora)
Opteron ??? (Cadiz)

 
Nombre: Socket M2
Pines: 638 ZIF
Voltajes:
 VID VRM
Bus: 200x4 MHz
Multiplicadores:  11.0x - 15.0x
Micros soportados:
Opteron 1xx
Nombre: Socket S1
Pines: 638 ZIF
Voltajes:
 VID VRM
Bus: 200x4 MHz
Multiplicadores:  11.0x - 15.0x
Micros soportados:
Athlon 64 Mobile
Nombre: PAC418
Pines: 418 VLIF
Voltajes: VID VRM
Bus: 133x2 MHz
Multiplicadores:  5.5x - 6.0x
Micros soportados:
Itanium (Merced, 733~800 MHz)
Nombre: PAC611
Pines:
 611 VLIF
Voltajes: VID VRM
Bus: 200x2, 266x2, 333x2 MHz
Multiplicadores:  4.5x - 7.5x
Micros soportados:
Intanium 2 (McKinley, 900 MHz~1'0 GHz)
Intanium 2 (Madison, 1'3~1'5 GHz)
Intanium 2 (Madison 1'6~1'66 MHz)
Intanium 2 (Deerfield, 1'0~1'6 GHz)
Itanium 2 (Montecito, 1GHz+)
Itanium 2 (Shavano, 1GHz+)
Itanium 2 (Fanwood, 1GHz+)
Itanium 2 (Millington, 1GHz+)
Itanium 2 (Montvale, 1GHz+)


Sockets de 7ª generación
 
Sockel 462
Nombre: Socket A/462
Pines:
 462 ZIF
Voltajes: VID VRM (1.1 - 2.05 V)
Bus: 1002, 133x2, 166x2, 200x2 MHz
Multiplicadores:  6.0x - 15.0x
Micros soportados:
Duron (Spitfire, 600-950 MHz),
Duron (Morgan, 1 - 1'3 GHz)
Duron (Appaloosa, 1'33 GHz)
Duron (Applebred, 1'4 - 1'8 GHz)
Athlon (Thunderbird 650 MHz - 1'4 GHz)
Atlon 4 Mobile (Palomino)
Athlon XP (Palomino, 1500+ a 2100+)
Athlon XP (Thoroughbred A, 2200+)
Athlon XP (Thoroughbred B, 1600+ a 2800+)
Athlon XP (Barton, 2500+ a 3200+)
Athlon MP (Palomino, 1 GHz a 2100+)
Athlon MP (Thoroughbred, 2000+ a 2600+)
Athlon MP (Barton, 2800+)
1 GHz a 2100+)
Sempron (Thoroughbred 2200+ a 2300+)
Athlon Sempron (Thorton 2000+ a 2400+)
Athlon Sempron (Barton)
Geode NX (667, 100 y 1400 MHz)
Notas: todos los micros mencionados son de AMD

 
Nombre: Socket 423
Pines: 423 ZIF
Voltajes: VID VRM )1.0 - 1.85 V)
Bus: 100x4 MHz
Multiplicadores:  13.0x - 20.0x
Micros soportados:
Celeron (Willamette, 1'7 - 1'8 GHz, con adaptador)
Pentium 4 (Willamette, 0'18 micras, 1,3 - 2 GHz)
Pentium 4 (Northwood, 0'13 micras, 1,6A - 2,0A GHz, con adaptador)

Adaptadores soportados:New Wave NW 478
Powerleap PL-P4/W
Powerleap PL-P4/N
Notas: memoria RAMBUS
Nombre: Socket 478
Pines: 478 ZIF
Voltajes: VID VRM
Bus: 100x4, 133x4, 200x4 MHz
Multiplicadores:  12.0x - 28.0x
Micros soportados:
Celeron (Willamete, 1'7 - 1'8 GHz)
Celeron (Northwood 1'6 - 2'8 GHz)
Celeron D (Prescott 310/2'333 Ghz - 340/'2933 GHz)
Penitum 4 (Willamette 1'4 - 2'0 GHz)
Pentium 4 (Northwood 1'6A - 3'4C)
Penitum 4 (Prescott, 2,26A - 3,4E GHz)
Pentium 4 Extreme Edition (Gallatin, 3'2 - 3'4 GHz)
Pentium M (Banias, 600 MHz - 1'7 GHz, con adaptador)
Pentium M (Dothan, 600 MHz - 2'26 GHz, con adaptador)

Adaptadores soportados:Asus CT-479 (adaptador)
Notas: Similares en soporte de micros al Socket 423, pero visiblemente mucho más pequeño
Sockel 603Sockel 604
Nombre: Socket 603/604
Pines: 603/604 ZIF
Voltajes: VID VRM (1.1 - 1.85 v)
Micros soportados:Xeon (Foster, 1.4GHz~2.0GHz)
Xeon LV (Prestonia, 1.6GHz~2.0GHz)
Xeon (Prestonia, 1.8GHz~3.06GHz)
Xeon (Gallatin, 1.5 GHz~3.0 GHz)
Xeon (Nocona, 2.8 GHz~3.6 GHz)
Xeon (Irwindale, 2.8 GHz~3.8 GHz)
Xeon DP (Paxville DP, 2.8 GHz~???)
Xeon MP (Foster MP, 1.4GHz  - 1.6GHz)
Xeon MP (Gallatin, 1.5GHz~3.0 GHz)
Xeon MP (Potomac, 2.83 GHZ~???)
Xeon 7020~??? (Paxville MP)
Xeon 7110N~??? (Tulsa)
Xeon (Sossaman)

Notas:
 El socket 604 es la versión para Hyperthreading del 603
Nombre: Socket 479
Pines: 478 ZIF
Voltajes: VID VRM
Bus: 100x4, 133x4 MHz
Multiplicadores:  12x - 28x
Micros soportados:Celeron M (Dothan, 380/1'6 a 390/1'7 GHz)
Celeron M (Yonah, 410/1'466 a 430/1'733 GHz)
Pentium M (Dothan 735/1'7 a 770/2'133 GHz)
Core Solo (Yonah, 1'833 GHz)
Core Duo (Yonah, T2300/1,667 a T2600/2'166 GHz)
Core 2 Duo (Merom, T550/1'667 a T7600/2'333 GHz)

Sockets de 6ª generación
 
Sockel 8Slot 1Slot 2
Nombre: Socket 8
Pines: 387 LIF y 387 ZIF
Voltajes: VID VRM (2.1 - 3.5 V)
Bus: 60, 66, 75 MHz
Multiplicadores:  2.0x - 8.0x
Micros soportados:
Pentium Pro (150-200 MHz)
Pentium II 
OverDrive (300-333 MHz)

Adaptadores soportados:
Evergreen AcceleraPCI
PowerLeap PL-Pro/II
PowerLeap PL-Renaissance/AT
PowerLeap PL-Renaissance/PCI

Nota: El pentium Pro sentó la bases de los micros actuales.
Nombre: Slot 1
Pines: 242 SECC, SECC2 y SEPP
Voltajes:
 VID VRM (1.3 - 3.3 V)
Bus: 60, 66, 68, 75, 83, 100, 102, 112, 124, 133 MHz
Multiplicadores:  3.5x - 11.5x
Micros soportados:
Celeron (Covington, 266-300 MHZ)
Celeron (Mendocino, 300A, 433 MHz)
Celeron (Mendocino PGA, 300A, 533 MHz, con adaptador)
Celeron (Coppermine-128 (500A MHz - 1'1 GHz, con adaptador)
Pentium II (Klamath, 233-300 MHZ)
Pentium II (Deschutes, 266-450 MHZ)
Pentium III (Katmai, 450-600B MHZ)
Pentium III (Coopermine, 533EB MHz - 1'13 GHZ)


Adaptadores soportados:
Evergreen Performa
New Wave NW Slot-T
PowerLeap PL/PII
PowerLeap PL-iP3
PowerLeap PL-iP3/T
Varios adaptadores "Slotket"

 
Nombre: Slot 2
Pines: 330 SECC
Voltajes: VID VRM (1.3 - 3.3 V)
Bus: 100, 133 MHz
Multiplicadores:  4.0x - 7.0x
Micros soportados:
Pentium II Xeon (Drake, 400-450 MHz)
Pentium III Xeon (Tanner, 500-550 MHZ)
Pentium III Xeon (Cascades, 600 MHz - 1 GHZ)
Slot ASocket 370S
Nombre: Slot A
Pines: 242 SECC
Voltajes: VID VRM (1.3 - 2.05 V)
Bus: 100x2, 133x2 MHz
Multiplicadores:  5.0x - 10.0x
Micros soportados:
A
thlon (K7, 500-700 MHZ)
Athlon (K75, 550 MHz - 1 GHZ)
Athlon (Thunderbird, 650 MHz- 1 GHZ)
Notas: Diseñado a partir del EV6 del DEC Alpha
Nombre: Socket 370
Pines: 370 ZIF
Voltajes: VID VRM (1.05 - 2.1 V)
Bus: 66, 100, 133 MHz
Multiplicadores:  4.5x - 14.0x
Micros soportados:
Celeron (Mendocino, 300A - 533 MHz)
Celeron (Coppermine (500A MHz - 1'1 GHz)
Celeron (Tualatin, 900A MHz - 1'4 GHZ)
Pentium III (Coopermine, 500E MHz - 1'13 GHZ)
Pentium III (Coopermine-T, 866 MHz - 1'13 GHZ)
Pentium III (Tualatin, 1'0B - 1'33 GHZ)
Pentium III-S (Tualatin, 700 - 1'4 GHZ)
Cyrix III (Samuel, 533, 667 MHz)
Via C3 (Samuel 2, 733A - 800A MHz)
Via C3 (Ezra, 800A - 866A MhZ)
Via C3 (Ezra-T 800T MHZ - 1'0T GHz)
Via C3 (Nehemiah, 1 - 1'4 GHz)
Via C3 (Esther)


Adaptadores soportados:
New Wave NW 370T
PowerLeap PL Neo-S370
 
Nombre: Socket 370S
Pines: 370 ZIF
Voltajes: 1.48 V
Bus: 66x4 MHz
Multiplicadores:  9.0x - 10.0x
Micros soportados:
Celeron (Timna, 600, 667 MHz)


Sockets de 5ª generación
 
Sockel 5Sockel 7
Nombre: Socket 4
Pines: 273 LIF y 273 ZIF
Voltajes:
 5 V
Bus: 
60, 66 MHz
Multiplicadores:  1x
Micros soportados:
Pentium (60~66 MHz)
Pentium OverDrive (120~133 Mhz)


Adaptadores soportados:
Computer Nerd RA3
Evergreen AcceleraPCI
PowerLeap PL/54C
PowerLeap PL/54CMMX
PowerLeap PL-Renaissance/AT
PowerLeap PL-Renaissance/PCI
Trinity Works P6x
Nombre: Socket 5
Pines: 296 LIF, 296 ZIF, 320 LIF y 320 ZIF
Voltajes:
 STD, VR, VRE
Bus: 50, 60, 66 MHz
Multiplicadores:  1'5x, 2x
Micros soportados:Pentium P45C (75~133 MHz)
Pentium MMX P55C (166~266 MHz, con adaptador
Pentium OverDrive (125~166 MHz)
Pentium MMX OverDrive (125~180 MHz)
AMD K5 (PR75 a P133)
AMD K6 (166~300 Mhz, con adaptador)
AMD K6-2 (266~400 MHz, con adaptador)
Cyrix 6x86L PR120+ a PR166+, con adaptador)
Cyrix 6x86MX (PR166+ a PR133+. con adaptador)
Winchip (180~200 MHz)
Winchip2 (200~240 MHz)
Winchip2A/B (2333 MHz)


Adaptadores soportados:
Concept Manuf. VA55C
Evergreen PR166
Evergreen MxPro
Evergreen AcceleraPCI
Evergreen Spectra
Kingston TurboChip
Madex 586
PNY QuickChip 200
PNY QuickChip-3D 200
PowerLeap PL/OD54C
PowerLeap PL-ProMMX
PowerLeap PL/K6-III
PowerLeap PL-Renaissance/AT
PowerLeap PL-Renaissance/PCI
Trinity Works P7x
 
Nombre: Socket 7
Pines:
 296 LIF y 321 ZIF
Voltajes:
 Split, STD, VR, VRE, VRT (2.5 - 3.3 V)
Bus: 40, 50, 55, 60, 62, 66, 68, 75, 83, 90, 95, 100, 102, 112, 124
Multiplicadores: 
 1.5x - 6.0x
Micros soportados:
Pentium P45C (75~200 MHz)
Pentium MMX P55C (166~266 MHz)
Pentium OverDrive (P125~166 MHz)
AMD K5 (75~200 MHz)
K6 (166~300 MHz)
K6-2 (266~570 MHz)
K6-2+ (450~550 MHz)
K6-III (400~450 MHz)
K6-III+ (450~500 MHz)
Cyrix 6x86 PR90+ a PR200+
Cyrix 6x86L PR120+ a PR200+
Cyrix 6x86MX (PR166+ a PR133+)
Cyrix MII (233~433 MHZ)
Rise mP6 (166~266 MHz)
Winchip (150~240 MHz)
Winchip2 (200~240 MHz)
Winchip2A/B (200~300 MHz)


Adaptadores soportados:
Computer Nerd RA5
Concept Manuf. VA55C
Evergreen PR166
Evergreen MxPro
Evergreen AcceleraPCI
Evergreen Spectra
Kingston TurboChip
Madex 586
PNY QuickChip-3D 200
PowerLeap PL/OD54C
PowerLeap PL/ProMMX
PowerLeap PL/K6-III
PowerLeap PL-Renaissance/AT
PowerLeap PL-Renaissance/PCI
Notas: A las versiones superiores a 100 MHz de FSB se les llamó "Socket Super 7"
Nombre: Socket NextGen
Pines: 463 ZIF
Voltajes: 4V
Bus: 
35, 37.5, 42, 46.5, 51, 55.5 MHz
Multiplicadores:  2x
Micros soportados:NexGen Nx586 (75~120 MHz)


Sockets de 4ª generación
 
-
Nombre: Socket 486
Pines:
 168 LIF
Voltajes:
 5 V
Bus: 
20, 25, 33 MHz
Multiplicadores:  1x - 3x
Micros soportados:486DX (20~33 MHz)
486DX2 (50~66 MHz)
486DX4 (75~120 MHz, con adaptador)
486DX2 OverDrive (PR 50~66)
486DX4 OverDrive (PR 75~100)
Am5x86 133, con adaptador
Cyrix Cx486
Cx486S
Cx5x86 100~120, con adaptador


Adaptadores soportados:
ComputerNerd RA4
Gainbery 5x86 133
Kingston TurboChip 133
PowerLeap PL/586 133
PowerLeap PL-Renaissance/AT
Trinity Works 5x86-133
Nombre: Socket 1
Pines: 169 LIF y 169 ZIF
Voltajes: 5 V
Bus: 
16, 20, 25, 33 MHz
Multiplicadores:  1x - 3x
Micros soportados:486SX (16~33 MHz)
486SX2 (50~66 MHz)
486SX OverDrive (P 25~33 MHz)
486SX2 OverDrive (P 50 MHz)
486DX (20~33 MHz)
486DX2 (50~66 MHz)
486DX4 (75~120 MHz, con adaptador)
486DX OverDrive (P 25~33 MHz)
486DX2 OverDrive (P 50~66 MHz)
486DX4 OverDrive (P 75~100 MHz)
486DX2 OverDrive (PR 50~66 MHz)
486DX4 OverDrive (PR 75~100 MHz)
Am5x86 (133 MHz, con adaptador)
Cx486
Cx486S
Cx5x86 (100~120 MHz, con adaptador)


Adaptadores soportados:
ComputerNerd RA4
Evergreen 586 133
Gainbery 5x86 133
Kingston TurboChip 133
Madex 486
PowerLeap PL/586 133
PowerLeap PL-Renaissance/AT
Trinity Works 5x86-133
Nombre: Socket 2
Pines: 238 LIF y 238 ZIF
Voltajes: 5 V
Bus: 
25, 33, 40, 50 MHz
Multiplicadores:  1x - 3x
Micros soportados:486SX (25~33 MHz)
486SX2 (50~66 MHz)
486SX OverDrive (P 25~33 MHz)
486SX2 OverDrive (P 50 MHz)
486DX (25~50 MHz)
486DX2 (50~80 MHz)
486DX4 (75~120 MHz, con adaptador)
486DX OverDrive (P 25~33 MHz)
486DX2 OverDrive (P 50~66 MHz)
486DX4 OverDrive (P 75~100 MHz)
486DX2 OverDrive (PR 50~66 MHz)
486DX4 OverDrive (PR 75~100 MHz)
Pentium OverDRive (P 63~83 MHz)
Am5x86 (133 MHz, con adaptador)
Cx486
Cx486S
Cx5x86 (100~120 MHz, con adaptador)


Adaptadores soportados:
ComputerNerd RA4
Evergreen 586 133
Gainbery 5x86 133
Kingston TurboChip 133
Madex 486
PowerLeap PL/586 133
PowerLeap PL-Renaissance/AT
Trinity Works 5x86-133
-
Nombre: Socket 3
Pines: 237 LIF y 237 ZIF
Voltajes: 3.3 / 5 V
Bus: 25, 33, 40, 50 MHz
Multiplicadores:  1x - 3x
Micros soportados:486SX (25~33 MHz)
486SX2 (50~66 MHz)
486SX OverDrive (P 25~33 MHz)
486SX2 OverDrive (P 50 MHz)
486DX (25~50 MHz)
486DX2 (50~80 MHz)
486DX4 (75~120 MHz)
486DX OverDrive (P 25~33 MHz)
486DX2 OverDrive (P 50~66 MHz)
486DX4 OverDrive (P 75~100 MHz)
486DX2 OverDrive (PR 50~66 MHz)
486DX4 OverDrive (PR 75~100 MHz)
Pentium OverDRive (P 63~83 MHz)
Am5x86 (133 MHz)
Cx486
Cx486S
Cx5x86 (100~120 MHz)


Adaptadores soportados:
ComputerNerd RA4
Evergreen 586 133
Gainbery 5x86 133
Kingston TurboChip 133
Madex 486
PowerLeap PL/586 133
PowerLeap PL-Renaissance/AT
PowerLeap PL-Renaissance/PCI
Trinity Works 5x86-133
Nombre: Socket 6
Pines: 235 ZIF
Voltajes: 3.3 / 3.45 V
Micros soportados: 486DX4 75-120 MHz
Notas: No disponible comercialmente

Siglas:
  • LIF: Low Insertion Force (sin palanca)
  • PGA: Pin grid array
  • SECC: Single Edge Contract Cartridge
  • SEPP: Single Edge Processor Package
  • SPGA: Staggered Pin Grid Array
  • VID VRM: Voltage ID Voltage Regulator Module (el voltaje de la CPU se puede variar en la BIOS)
  • VLIF: Very Low Insertion Force
  • ZIF: Zero Insertion Force (con palanca)

PROYECTO BOBINA DE TESLA


BOBINA DE TESLA CASERA
 MATERIALES:
·         Base sobre la que instalar los componentes. Una tabla de madera puede ser suficiente.
·         Una pila de 9V con un conector.
·         Un transistor (2N2222A).
·         Una resistencia de 22k Ohm.
·         Un interruptor.
·         Un tubo de PVC.
·         Alambre de cobre.
·         Una pequeña pelota.
·         Papel de aluminio.
·         Cinta adhesiva.
·         Cable para conectarlo o soldarlo todo.
DIAGRAMA ESQUEMATICO

Resultado de imagen para BOBINA DE TESLA

El resultado se puede probar con diferentes bombillas y leds, que se iluminarán de forma variable dependiendo de su tamaño, potencia.
QUE ES UNA BOBINA DE TESLA.
La bobina de Tesla está compuesta por una serie de circuitos eléctricos resonantes acoplados. Normalmente las bobinas de Tesla crean descargas eléctricas con un alcance de varios metros. Esta bobina consiste en una fuente de alimentación, un condensador eléctrico, un transformador de bobina y un juego de electrodos para que la chispa salte a través del aire.
Resultado de imagen para BOBINA DE TESLA
PROCEDIMIENTO

Paso #1

Enrollar el Alambre de cobre desde un extremo del Tubo PVC hasta llegar al otro extremo
sin dejar algún espacio vacío. Pega Cinta Adhesiva al Alambre donde se empezó a enrollar y
donde terminó (Debe quedar una punta libre de cada lado).
 Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA
 Paso #2

Pega el Transistor 2N2222A con Cinta Adhesiva a un costado de la tabla (Las puntas deben estar
hacia el centro de la tabla). Luego pega con Pegamento Caliente el Interruptor, cerca del transistor y
a la orilla de la Tabla. Después pega el Tubo PVC a otro costado de la tabla, recuerda que el alambre
debe estar en dirección a las puntas del transistor.
Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA

Paso #3

Soldar la Resistencia 22 k a la parte central del Transistor. Luego pelar el esmalte de la punta libre del Alambre
en dirección al Transistor para soldarlo a la unión de la Resistencia 22 k con el Transistor. Después pega con pegamento
caliente cada extremo del Cable Ordinario enrollándolo 2 vueltas al Tubo (Deja las puntas libres).

Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA
Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA

Paso #4

Soldar el extremo derecho del Cable Ordinario a la punta derecha del Transistor. Luego con otro pedazo de Cable Ordinario se realiza
un puente del extremo sobrante del Cable enrollado al Tubo soldando ese extremo con el otro cable y el extremo del puente con la Resistencia.
Después soldar otro puente desde la tercera punta del Interruptor hacia la unión del puente anterior.

 Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA
 Paso #5

Soldar el cable rojo del Broche a la segunda punta del Interruptor y el cable negro a la punta restante del Transistor. Luego conectamos la Pila/Batería al Broche.
Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA

ü  Prueba #1

Encendemos el Interruptor y sosteniendo una Bombilla en la mano la giramos o rotamos alrededor del Tubo con alambre. Si funciona puedes seguir al siguiente paso,
si no funciona verifica las soldaduras y las conexiones correctas.

 Paso #6

Forramos la Pelota Pequeña o de Ping Pong de Papel Aluminio. Luego pegamos el extremo restante del Alambre de cobre a la pelota (Meter la punta dentro del aluminio)
y pegamos la pelota con pegamento caliente a la parte superior del Tubo. Después pegamos con Cinta Adhesiva la Pila/Batería.

 Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA
ü  Prueba #2

Enciende el Interruptor de nuevo y rota la Bombilla alrededor de la pelota y el Tubo.
Resultado de imagen para PROCEDIMIENTO DE BOBINA DE TESLA